Properties of the spermidine/spermine N1-acetyltransferase mutant L156F that decreases cellular sensitivity to the polyamine analogue N1, N11-bis(ethyl)norspermine.
نویسندگان
چکیده
Properties of a mutant form of spermidine/spermine N(1)-acetyltransferase, L156F (L156F-SSAT), that is present in Chinese hamster ovary cells selected for resistance to the polyamine analogue N(1,) N(11)-bis(ethyl)norspermine (BE 3-3-3) were investigated. Increased K(m) values, decreased V(max) values, and decreased k(cat) values with both polyamine substrates, spermidine and spermine, indicated that L156F-SSAT is an inferior and less efficient acetyltransferase than wild-type SSAT. Transfection of L156F-SSAT into C55.7Res cells indicated that cellular SSAT activity per nanogram of SSAT protein correlated well with the in vitro data and was also approximately 20-fold less for the mutant protein than for wild-type SSAT. Increased expression of L156F-SSAT was unable to restore cellular sensitivity to BE 3-3-3 despite providing measurable basal SSAT activity. Only a 4-fold induction of L156F-SSAT activity resulted from the exposure of cells to the polyamine analogue, whereas wild-type SSAT was induced approximately 300-fold. Degradation studies indicated that BE 3-3-3 cannot prevent ubiquitination of L156F-SSAT and is therefore unable to protect the mutant protein from degradation. These studies indicate that the decreased cellular sensitivity to BE 3-3-3 is caused by the lack of SSAT activity induction in the presence of the analogue due to its inability to prevent the rapid degradation of the L156F-SSAT protein.
منابع مشابه
Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines.
The polyamine analogue, N1,N12-bis(ethyl(-spermine (BESPM), is known to suppress ornithine and S-adenosylmethionine decarboxylase levels, deplete intracellular polyamine pools, and inhibit cell growth. Among human melanoma cell lines, MALME-3 cells were found to be typically sensitive to the antiproliferative activity of the BESPM, whereas LOX cells were atypically insensitive to the analogue. ...
متن کاملMajor increases in spermidine/spermine-N1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells.
As an antiproliferative strategy, we are using bis(ethyl) derivatives of spermine to suppress polyamine biosynthetic enzyme activity and, thereby, deplete intracellular polyamine pools. Since certain of these analogues have recently been shown to potently increase spermidine/spermine-N1-acetyltransferase activity, we have investigated the relationship of this effect to growth inhibition and pol...
متن کاملAltered spermidine/spermine N1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues.
To develop a model system to investigate mechanisms of antiproliferative action of bis(ethyl)polyamine analogues, intermittent analogue treatments followed by recovery periods in drug-free medium were used to select an N(1), N(12)-bis(ethyl)spermine-resistant derivative of the Chinese hamster ovary cell line C55.7. The resulting C55.7Res line was at least 10-fold resistant to N(1),N(12)-bis(eth...
متن کاملAntitumor activity of N,N'-bis(ethyl)spermine homologues against human MALME-3 melanoma xenografts.
The spermine analogues, N1,N12-bis(ethyl)spermine (BESPM), N1,N11-bis(ethyl)norspermine (BENSPM), and N1,N14-bis(ethyl)-homospermine (BEHSPM) behave similarly in down-regulating the key polyamine biosynthetic enzymes, ornithine and S-adenosylmethionine decarboxylase, but differ distinctly in their abilities to induce the polyamine catabolic enzyme, spermidine/spermine-N1-acetyltransferase; BENS...
متن کاملActivation of polyamine catabolism by N1,N11-diethylnorspermine leads to cell death in glioblastoma.
Glioblastoma multiforme (GBM) is one of the most therapeutically refractory human cancers. Elevated cellular polyamine levels are a common feature of cancer cells, including GBM cells, and the polyamine pathway has been explored as a potential therapeutic target to inhibit polyamine biosynthesis or activate polyamine catabolism. In this study, we investigated the effect of N1,N11-diethyl-norspe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 16 شماره
صفحات -
تاریخ انتشار 2003